Course Outline
Introduction
- Adapting software development best practices to machine learning.
- MLflow vs Kubeflow -- where does MLflow shine?
Overview of the Machine Learning Cycle
- Data preparation, model training, model deploying, model serving, etc.
Overview of MLflow Features and Architecture
- MLflow Tracking, MLflow Projects, and MLflow Models
- Using the MLflow command-line interface (CLI)
- Navigating the MLflow UI
Setting up MLflow
- Installing in a public cloud
- Installing in an on-premise server
Preparing the Development Environment
- Working with Jupyter notebooks, Python IDEs and standalone scripts
Preparing a Project
- Connecting to the data
- Creating a prediction model
- Training a model
Using MLflow Tracking
- Logging code versions, data, and configurations
- Logging output files and metrics
- Querying and comparing results
Running MLflow Projects
- Overview of YAML syntax
- The role of the Git repository
- Packaging code for re-usability
- Sharing code and collaborating with team members
Saving and Serving Models with MLflow Models
- Choosing an environment for deployment (cloud, standalone application, etc.)
- Deploying the machine learning model
- Serving the model
Using the MLflow Model Registry
- Setting up a central repository
- Storing, annotating, and discovering models
- Managing models collaboratively.
Integrating MLflow with other Systems
- Working with MLflow Plugins
- Integrating with third-party storage systems, authentication providers, and REST APIs
- Working Apache Spark -- optional
Troubleshooting
Summary and Conclusion
Requirements
- Python programming experience
- Experience with machine learning frameworks and languages
Audience
- Data scientists
- Machine learning engineers
Delivery Options
Private Group Training
Our identity is rooted in delivering exactly what our clients need.
- Pre-course call with your trainer
- Customisation of the learning experience to achieve your goals -
- Bespoke outlines
- Practical hands-on exercises containing data / scenarios recognisable to the learners
- Training scheduled on a date of your choice
- Delivered online, onsite/classroom or hybrid by experts sharing real world experience
Private Group Prices RRP from €6840 online delivery, based on a group of 2 delegates, €2160 per additional delegate (excludes any certification / exam costs). We recommend a maximum group size of 12 for most learning events.
Contact us for an exact quote and to hear our latest promotions
Public Training
Please see our public courses
Testimonials (1)
the ML ecosystem not only MLFlow but Optuna, hyperops, docker , docker-compose