Course Outline

Introduction to Advanced Stable Diffusion

  • Overview of Stable Diffusion architecture and components
  • Deep learning for text-to-image generation: review of state-of-the-art models and techniques
  • Advanced Stable Diffusion scenarios and use cases

Advanced Text-to-Image Generation Techniques with Stable Diffusion

  • Generative models for image synthesis: GANs, VAEs, and their variations
  • Conditional image generation with text inputs: models and techniques
  • Multi-modal generation with multiple inputs: models and techniques
  • Fine-grained control of image generation: models and techniques

Performance Optimization and Scaling for Stable Diffusion

  • Optimizing and scaling Stable Diffusion for large datasets
  • Model parallelism and data parallelism for high-performance training
  • Techniques for reducing memory consumption during training and inference
  • Quantization and pruning techniques for efficient model deployment

Hyperparameter Tuning and Generalization with Stable Diffusion

  • Hyperparameter tuning techniques for Stable Diffusion models
  • Regularization techniques for improving model generalization
  • Advanced techniques for handling bias and fairness in Stable Diffusion models

Integrating Stable Diffusion with Other Deep Learning Frameworks and Tools

  • Integrating Stable Diffusion with PyTorch, TensorFlow, and other deep learning frameworks
  • Advanced deployment techniques for Stable Diffusion models
  • Advanced inference techniques for Stable Diffusion models

Debugging and Troubleshooting Stable Diffusion Models

  • Techniques for diagnosing and resolving issues in Stable Diffusion models
  • Debugging Stable Diffusion models: tips and best practices
  • Monitoring and analyzing Stable Diffusion models

Summary and Next Steps

  • Review of key concepts and topics
  • Q&A session
  • Next steps for advanced Stable Diffusion users.

Requirements

  • Good understanding of deep learning concepts and architectures
  • Familiarity with Stable Diffusion and text-to-image generation
  • Experience with PyTorch and Python programming

Audience

  • Data scientists and machine learning engineers
  • Deep learning researchers
  • Computer vision experts.
 21 Hours

Delivery Options

Private Group Training

Our identity is rooted in delivering exactly what our clients need.

  • Pre-course call with your trainer
  • Customisation of the learning experience to achieve your goals -
    • Bespoke outlines
    • Practical hands-on exercises containing data / scenarios recognisable to the learners
  • Training scheduled on a date of your choice
  • Delivered online, onsite/classroom or hybrid by experts sharing real world experience

Private Group Prices RRP from €6840 online delivery, based on a group of 2 delegates, €2160 per additional delegate (excludes any certification / exam costs). We recommend a maximum group size of 12 for most learning events.

Contact us for an exact quote and to hear our latest promotions


Public Training

Please see our public courses

Provisional Upcoming Courses (Contact Us For More Information)

Related Categories